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c© Società Italiana di Fisica

Springer-Verlag 2000

The (BFKL) Pomeron-γ∗-γ vertex for any conformal spin

S. Munier, H. Navelet
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Abstract. To study diffractive photon production at HERA, we compute the projection of the γ∗γ impact-
factor on the BFKL leading-order eigenfunctions En,ν for non-zero transfer. This calculation supplements
former ones performed for n = 0. We provide an expression for n = ±2 and check that all the other
components are zero.

1 Introduction

The BFKL equation has been widely used to study the in-
clusive or semi-inclusive observables measured at HERA
(structure functions, diffractive structure functions) in the
small-x (large s) kinematical region [1]. It is an evolu-
tion equation for the gluon density and was written and
solved at leading-log(1/x) level (LLx) [2–4] and at next-
to-leading accuracy (NLLx) [5,6].

In the following, we will be concerned with the LLx
kernel, which exhibits an interesting property: in the space
of the transverse positions ρ1 and ρ2 of the evolved glu-
ons, it was shown to be invariant under the global confor-
mal transformations [7]. Hence the general solution of the
BFKL equation can be written as a sum over the kernel
eigenfunctions corresponding to the irreducible represen-
tations of the symmetry group SL(2, C). The latter are
indexed by two indices, one of them being the (discrete)
conformal spin n, the other one the (continuous) real pa-
rameter ν. The dominant energy behaviour is a power-
like rise of the amplitude s∆P , where the intercept value
∆P ≈ 0.3 − 0.5 usually quoted is given by the n = 0 com-
ponent.

However, the phenomenological relevance of the
higher-spin components (n 6= 0) was suggested in [8]. In
that paper, it is shown that the n = ±2 components ap-
pearing through the BFKL resummation can mimic the
soft pomeron. Indeed, this component exhibits effectively
the right energy dependence of the soft pomeron and re-
produces well its “higher-twist” behaviour at moderate
and large Q2 pointed out by Donnachie and Landshoff [9].
Nevertheless, a number of points of the conjecture were
left untested. In particular, only a phenomenological ex-
pression for the coupling of the photon impact-factor to
the higher-spin components was used. Moreover, the non-
forward behaviour was not considered for lack of a precise
knowledge of the relevant coupling at the photon vertex.

Recently, much efforts have been devoted to the study
of the photon impact-factor in the transition γ∗ → γ [10,

11]. Its coupling to the LLx BFKL pomeron was computed
but only for n = 0. We propose in this paper to extend
these calculations to n = ±2. The odd components are
automatically zero by symmetry. Furthermore, we have
checked that the |n|>2 ones are zero. As we will see later,
this is due to the fact that the coupling of two spin-1
photons selects conformal spins smaller or equal to 2. We
provide the explicit expressions for n=0 and n=±2 (see
(3.28) and subsequent equations).

The general framework of our calculation is presented
in Sect. 2. The calculation appears in some details in
Sect. 3. To keep it readable, the most technical point are
outlined in the five appendices A-E where we show in
particular the evaluation of a generalized hypergeometric
3F2 function. Finally, we draw our conclusions and suggest
outlooks.

2 Definition of the scattering process

We consider the scattering of the two objects 1 and 1′ into
2 and 2′ (see Fig. 1). The functions φ(ρ1, ρ2) (resp. φ′)
are their impact factors and depend on the bidimensional
variables ρ1, ρ2 which are conjugate to the transverse mo-
menta k, k + q of the exchanged gluons. We deal with an
impact factor involving a virtual photon in the initial state
and a real one in the final state. If furthermore the object
1′ is a proton, this process models diffractive photon pro-
duction at HERA with a large rapidity gap generated by
the BFKL resummation. If 1′ is also a photon, we have
access to γ∗γ∗ physics. We should not enter into these de-
tails in this paper, and we will only stick to the γ∗ → γ
impact-factor.

In the BFKL framework, the most general expression
for the scattering amplitude of two objects 1 and 1′
reads [7]:
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Fig. 1. Scattering process. 1 and 2 label the colliding objects.
The wavy lines represent exchanged reggeized gluons which
interact through the BFKL kernel. The arrows give the mo-
mentum flux
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×eᾱ log(s/s0)χn(ν) In,ν Ī ′n,ν , (2.1)

where G is the appropriate colour factor corresponding to
the process under consideration, ᾱ ≡ αs Nc/π and χn(ν)
is the well-known eigenvalue of the leading-order BFKL
kernel:

χn(ν) = 2Ψ(1) − 2 Re Ψ

(
1+|n|

2
+iν

)
. (2.2)

The scale s0 is undetermined at LLx. The functions In,ν

and Ī ′n,ν are the “vertex functions”, i.e. the impact factors
φ projected on the corresponding eigenfunctions En,ν of
the BFKL kernel:

In,ν = −1
4

∫
dρ1dρ̄1

∫
dρ2dρ̄2φ(ρ1, ρ2)En,ν(ρ1, ρ2) ,

(2.3)

where φ(ρ1, ρ2) is the impact-factor, and

En,ν(ρ1, ρ2) = (−1)n

(
ρ1 − ρ2

ρ1ρ2

)a(
ρ̄1 − ρ̄2

ρ̄1ρ̄2

)ã

. (2.4)

The convenient notations a = 1−n
2 + iν and ã = 1+n

2 + iν
have been introduced in the previous equation. We work
with complexified transverse vectors ρ = ρx + iρy and
ρ̄ = ρx − iρy.

The amplitude A is invariant by rotation. The BFKL
pomeron factorizes into two independent pieces depend-
ing respectively on the transverse variables of the upper
vertex (En,ν(ρ1, ρ2)) and the lower vertex (Ēn,ν(ρ′

1, ρ
′
2)).

This implies that each of the projected vertex functions
In,ν and Īn,ν must be invariant under the rotations in
this transverse plane. On one hand, the impact factor
φ(ρ1, ρ2) couples two external spin-1 particles. This means
that in the momentum space, it writes φ̃h1h2(k

⊥
1 , k⊥

2 ) =
εµ
h1

Tµν(k⊥
1 , k⊥

2 )εν
h2

, where εhi are the polarization vectors
of the external photons and Tµν is a tensor. From Lorentz-
covariance and parity-conservation arguments, one finds

QQ
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Fig. 2. Diagram contributing to the impact factor φ1. The
dashed lines represent (virtual or real) photons which resolve
into a quark-antiquark pair. The wavy lines stand for off-shell
gluons. Four such diagrams (corresponding to each possible
insertion of the two exchanged gluons) have to be taken into
account although (see text) only two of them effectively con-
tribute to the amplitude

that Tµν = t1(k⊥
1 , k⊥

2 )gµν +t2(k⊥
1 , k⊥

2 )(k⊥
1,µk⊥

2,ν −k⊥
2,µk⊥

1,ν),
where t1 and t2 are two scalar functions. This means that
φ(ρ1, ρ2) can be written as the sum of a term transform-
ing as a scalar, i.e. invariant under the rotations ρ1,2 →
eiϕρ1,2, and another term transforming as a tensor, i.e.
which picks up a factor e±2iϕ under the same rotation.
On the other hand, En,ν(ρ1, ρ2) are the eigenfunctions of
the Casimir operators of the conformal algebra, so they
pick a factor einϕEn,ν(ρ1, ρ2). For In,ν to be invariant,
one sees that the only values for n are |n|=0, 2.

This impact-factor φ was computed in [10] by evaluat-
ing the relevant Feynman graphs (one of these graphs is
depicted in Fig. 2). Two cases were distinguished. Either
the initial off-shell photon scatters into a real photon of
same helicity, or the helicity undergoes a flip. It was ar-
gued that the longitudinal polarization of the virtual pho-
ton does not contribute at LLx. Let us recast the obtained
expressions in the following form:

φ(ρ1, ρ2) = −4π2αeαse
2
∫ 1

0
dαf(α)

∫
dr1dr̄1

∫
dr2dr̄2

×eiαRe(q̄r1)ei(1−α)Re(q̄r2) (r1−r2)δ(r̄1−r̄2)δ̃

|r1−r2|2
×Q̂K1(|r1 − r2|Q̂)

(
δ2(r1−ρ1)−δ2(r2−ρ1)

)
× (δ2(r1−ρ2)−δ2(r2−ρ2)

)
, (2.5)

where Q̂ =
√

α(1−α)Q, e2 =
∑

q e2
q and δ = (1−∆)/2,

δ̃ = (1+∆)/2. The expressions for the function f(α) and
the exponent ∆ depend on the helicity. For the helicity-
conserving processes (+ → +) and (− → −), f(α) =
α2+(1−α)2 and ∆ = 0. In the helicity-flip case, f(α) =
2α(1−α), ∆ = −2 for the (+ → −) transition and ∆ = +2
for (− → +). The “+” and “−” refer to the helicity of the
initial state (resp. final state) photon with respect to the
standard basis:

ε± = ∓ 1√
2
(1,±i) . (2.6)

The computation of In,ν is done in the next section.
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3 Projection on the conformal eigenfunctions

Let us now compute the vertex function In,ν . Along the
lines of [10], one inserts (2.5) into (2.3). The product of
δ-functions present in the impact-factor (2.5) can be ex-
panded. Then two of the terms correspond to the cou-
pling of the BFKL pomeron to a single quark line and
vanish when projected on the En,ν . Indeed, terms of the
form δ2(r1 − ρ1)δ2(r2 − ρ2) can be rearranged to read
δ2(ρ2 − ρ1)δ2(2r1 − ρ1 − ρ2), and they give a zero con-
tribution since En,ν(ρ1, ρ2) = 0 for ρ1 = ρ2. Taking into
account the symmetry α → 1−α of f(α), the two remain-
ing contributions are identical and one obtains:

In,ν = 8π2αeαse
2
∫ 1

0
dαf(α)Q̂

∫
dρ1dρ̄1

∫
dρ2dρ̄2E

n,ν

×(ρ1, ρ2)K1(|ρ1 − ρ2|Q̂)

×eiαRe(q̄ρ1)ei(1−α)Re(q̄ρ2) (ρ1−ρ2)δ(ρ̄1−ρ̄2)δ̃

|ρ1−ρ2|2 . (3.7)

In the following, the calculation will only be done for
positive n. One inserts the expression for En,ν in (3.7) and
one takes the Mellin representation of the Bessel function:

K1(A) =
1
2

∫
ds

2iπ

(A
2

)−2s−1

Γ (s)Γ (1 + s) , (3.8)

where the contour of integration is parallel to the z-axis
and Re(s)>0. The changes of variable ρ1 = b(1 + t) and
ρ2 = b(1 − t) enable to reduce one of the {holomorphic}
×{antiholomorphic} integrals in (3.7). Indeed, in these
new coordinates, it is possible to factorize and perform
the integration over b. This integral makes sense provided
that γ−γ̃ is an integer. The result reads:∫

db db̄ bγ−1b̄γ̃−1e
i
2 (Qb̄+Q̄b)

= 2iπ ei π
2 (γ−γ̃)

Γ
(

γ+γ̃
2 + |γ−γ̃|

2

)
Γ
(
1− γ+γ̃

2 + |γ−γ̃|
2

) ( 2
Q̄
)γ ( 2

Q
)γ̃

(3.9)

= 2iπ ei π
2 (γ−γ̃) Γ (γ)

Γ (1−γ̃)

(
2
Q̄
)γ ( 2

Q
)γ̃

if γ−γ̃ ≥ 0 , (3.10)

with the parameter values Q = q(1−(1−2α)t), γ = 1/2−
a−s+δ, γ̃ = 1/2−ã−s̃+δ̃, and the convention s̃ = s. Next,
the integral over t can be performed. It is of the form:∫

dt t−
3
2+a−s+δ(1−t2)−a(1−(1−2α)t)− 1

2+a+s−δ

×{a.h.} , (3.11)

where we did not write extensively the antiholomorphic
part, but it can be obtained by taking the complex conju-
gate of b and the “tilde” of the exponents.

The conformal mapping t → t/(2 − t) leads, up to
an overall factor 2−a−ã+2s, to a well-known holomorphic

integral1. Here again, to make sense, all the differences
ai−ãi, bi−b̃i are integer [12]:

∫
dt ta1−1(1−t)b1−a1−1(1− (1 − α)t)b0−a0−1 × {a.h.}

= 2i
µ

sinπb1

π2

Γ (b1−a0)Γ (b1−a1)

{
Γ (ã0)Γ (ã1)

Γ (b̃1−ã0)Γ (b̃1−ã1)

×αb1−a0−a1 ᾱb̃1−ã0−ã1

Γ (1−a0)Γ (1−a1)
×2G1(b1−a0, b1−a1; b1; 1−α)

×2G1(b̃1−ã0, b̃1−ã1; b̃1; 1−ᾱ)

− (1−α)1−b1(1−ᾱ)1−b̃1

Γ (1−b1+a0)Γ (1−b1+a1)
×2G1(a0−b1+1, a1−b1+1; 2−b1; 1−α)

×2G1(ã0−b̃1+1, ã1−b̃1+1; 2−b̃1; 1−ᾱ)

}
, (3.12)

where 2G1(A,B; C; z) ≡ Γ (A)Γ (B)/Γ (C)×2F1(A,B; C; z),
and

µ = (−1)a0−ã0
Γ (b̃1−ã1)

Γ (1−b1+a1)
Γ (1−ã0)

Γ (a0)
. (3.13)

In our case, the parameter values are a0 = 1/2−a−s+ δ,
a1 = −1/2 + a − s + δ, b0 = 1, b1 = 1/2 − s + δ. One
sees that the convergence of the integral (3.12) imposes to
chose the integration contour in s such that Re(s) < 1/2.

At this stage, a comment on the possible values for n
is in order. Thanks to the relation a0 +a1 = 2b1 −1, the
conformal mapping t → −t/(t − 1) applied to (3.12) leads
to the same solution again but for a factor (−1)n and the
interchange 1−α ↔ α. As we integrate over α and as
all the other factors depending on α are symmetric under
the exchange α ↔ 1−α, we see that the final expression
will have a factor (1 + (−1)n)/2, and thus only the even
n contribute. This is expected since the BFKL pomeron
has only even conformal spin-components [13]. Physically,
this comes from the fact that the 4-gluon Green’s function
which is the BFKL kernel is symmetrized with respect to
the gluons. This symmetrization corresponds to the ex-
change ρ1 ↔ ρ2 which changes En,ν(ρ1, ρ2) in
(−1)nEn,ν(ρ1, ρ2). Nevertheless, our method applies for
any n and the final result will be a further check of the
validity of the whole calculation.

1 Note that our calculation differs at this level from the ones
in [10,11] but after the integration over α, we obtain the same
result, see (3.27) and appendix D for the comparison.
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All in all, we arrive at the following intermediate ex-
pression (we used δ+δ̃=1):

In,ν = 32π3(−1)
n
2 + δ−δ̃

2 + 1
2+δαeαse

2
(

Q

2

)a+ã−2

× sinπa
Γ (1−ã)

Γ (a)

∫
ds

2iπ

Γ (s)Γ (1+s)
sinπs

× 1
Γ ( 3

2 −δ−a+s)Γ ( 1
2 −δ+a+s)

(
q

Q

)− 1
2+ã+s−δ̃

×
(

q̄

Q

)− 1
2+a+s−δ

{
Γ (−1

2
+δ̃+ã−s)

×Γ (
1
2

+δ̃−ã−s) sinπã

×
∫ 1

0
dα f(α)αs(1−α)−s

2G1(a, 1−a;
1
2

−s+δ; 1−α)

×2G1(ã, 1−ã;
1
2

−s+δ̃; 1−α)

−Γ (
3
2

−δ−a+s)Γ (
1
2

−δ+a+s)

× sinπa

∫ 1

0
dα f(α)α−s(1−α)s

×2G1(a, 1−a;
3
2

+s−δ; 1−α)

×2G1(ã, 1−ã;
3
2

+s−δ̃; 1−α)

}
. (3.14)

The integrations over α remain to be performed. We can
treat all the cases by computing the following generic in-
tegral:

J m(a, c) =
sinπa

π

sinπc̃

π
Γ (c̃−ã)Γ (c̃+ã−1)

×
∫ 1

0
dα αm+1−c(1 − α)c−1

×2G1(a, 1−a; c; 1−α)
×2G1(ã, 1−ã; c̃; 1−α) , (3.15)

where c = 1/2−s+δ for the first integral and c = 3/2+s−δ
for the second one. For simplicity, we consider that when
one of the arguments of J has a “tilde” it means that
we exchange in the formula the corresponding argument
with its “tilde” counterpart. This notation can be slightly
misleading since the “tilde”-operation is not involutive.
The index m ∈ {0, 1, 2} has been introduced in order to
take into account the functions f(α) which we rewrite 1−
2α+2α2 and 2α(1−α) respectively. Thus the “physical”
integrals to compute are:

J++(a, c) = J 0(a, c) − 2J 1(a, c) + 2J 2(a, c)

J+−(a, c) = 2J 2(a, c) . (3.16)

With these notations, the amplitudes can be written:

In,ν
h1h2

= 32π4(−1)
n
2+

δ−̃δ
2 +1

2+δαeαse
2
(

Q

2

)a+ã−2

× sinπa
Γ (1−ã)

Γ (a)

∫
ds

2iπ

Γ (s)Γ (1+s)
sinπs

× 1
Γ ( 3

2 −δ−a+s)Γ ( 1
2 −δ+a+s)

(
q

Q

)− 1
2−̃δ+̃a+s

×
(

q̄

Q

)− 1
2−δ+a+s

(−1)n

×
{

π

sinπ( 1
2 +δ̃−s)

Jh1h2(a,
1
2

+δ−s)

− π

sinπ( 3
2 −δ+s)

Jh1h2(1−ã,
3
2

−δ̃+s)

}
, (3.17)

where h1, h2 ∈ {+,−}.
We can directly integrate (3.15). The method is to re-

place one of the 2G1(1−α) in formula (3.15) by a sum of
2G1(α). A consequence is that the result is invariant un-
der the exchange a ↔ ã, because of the 2 possible choices
for doing this replacement. It leads to 4G3 functions (see
appendix E), for which the explicit cancellation for |n|>2
appears. But we have a method which leads directly to
the 3G2 functions that we explicitly compute in the ap-
pendix. We express 2G1(z) as a G22

22(1−z) Meijer function,
namely:

2G1(A,B; C; z) =
1

Γ (C−A)Γ (C−B)
G22

22

×
(

1−A, 1−B
C−A−B

; 1 − z

)

=
1

Γ (C−A)Γ (C−B)

∫
ds′

2iπ
(1−z)s′

×Γ (−s′) Γ (C−A−B−s′)
×Γ (A+s′)Γ (B+s′) . (3.18)

Inserting this identity into (3.15) then performing the in-
tegration over α [14], one obtains:

J m(a, c) =
sinπc̃

π

∫
ds′

2iπ
Γ (ã+s′)Γ (1−ã+s′) (3.19)

×
{

Γ (−s′)Γ (m+1+s′)Γ (c̃−1−s′)Γ (m+2−c+s′)
Γ (m+2−a+s′)Γ (m+1+a+s′)

}
.

Next, we transform this integral into a sum of 3G2 func-
tions, which is done by reducing the quotient of
Γ -functions between the brackets in the r.h.s. and then
constructing the defining series for the 3G2 by picking the
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poles. This goes as follows. One writes:{
...

}
=

π

sinπ(−s′)
π

sinπ(c̃−1−s′)

×
[∏m−1

j=0 (1+s′+j) × Γ (m+2−c+s′)/Γ (2−c̃+s′)∏k−1
j=0 (m+1+a+s′−k+j)(m+2−a+s′−k+j)

]

× 1
Γ (m+1+a+s′−k)Γ (m+2−a+s′−k)

. (3.20)

By simple inspection, we get for any m:{
...

}
=

π

sinπ(−s′)
π

sinπ(c̃−1−s′)

×
m∑

p,q=0

Apq(a, c)
Γ (1 + a + p + s′)Γ (2 − a + q + s′)

, (3.21)

where the Apqs do not depend on s′. The integral defining
J can then be computed by constructing two series whose
coefficients are the residues at the right poles of the two
inverse-sines. Each of the series is a 3G2-function of the
type of those computed in appendix A. The values for the
non-vanishing coefficients Apq we have chosen are:

A00 = 1, A01 =
2

2a−1
(
a(a−1)+c(2−a)+c2) ,

A10 =
2

1−2a

(
a(a−1)+c(a+1)+c2) ,

A12 =
2

2a−1
(a−1)(a−2)(a−c)(a−c−1),

A21 =
2

1−2a
a(a+1)(a+c)(a+c−1) (3.22)

for the helicity-conserving (+ → +) amplitude and

A11 = 2, A12 =
2

2a−1
(a(a−3)+2), A21 =

2
1−2a

a(a+1)

(3.23)

for the helicity-flip (+ → −) one. Let us complete the
calculation for the J ’s.

Jh1h2(a, c) =
∑
p,q

Ah1h2,pq(a, c)

×
{

3G2

(
1, c̃+ã−1, c̃−ã

c̃+a+p, c̃−a+1+q
; 1

)

−3G2

(
1, ã, 1−ã

1+a+p, 2−a+q
; 1

)}
, (3.24)

where we have been able to factorize and simplify π/ sinπc̃
since c and c̃ differ by an even integer (0 or 2) in all cases.
The differences of 3G2 in the r.h.s. can be computed using
the tricks exposed in appendix A and B. The ones needed
for our purpose are explicitly shown in appendix C.

However, formula (A.40) enables us to perform the
calculation for general n (and then take the appropriate

limits). It enables us to write the J s as a sum of ratio-
nal fractions in a, ã and c, times a non-rational coeffi-
cient which is either sinπa/ sinπã or Γ (c−ã)Γ (c+ã−1)/
Γ (c−a)Γ (c+a−1). The rational fractions are tedious but
straightforward to compute using mathematica. Inserting
(3.24) after appropriate computation into (3.17), and re-
calling that a = (1−n)/2+iν yield for n = 0:

J++(
1
2

+iν, 1−s) + J++(
1
2

−iν, 1+s)

=
π

16iν(1+ν2)
sin2 πs tanπiν

cos π(iν−s) cos π(iν+s)
(11+12ν2+4s2)

J+−(
1
2

+iν, 2−s) + J+−(
1
2

−iν, 2+s)

=
π

4iν(1+ν2)
sin2 πs tanπiν

cos π(iν−s) cos π(iν+s)
. (3.25)

Those corresponding to n = 2 read:

J++(−1
2

+iν, 1−s) + J++(−1
2

−iν, 1+s)

= − π

32iν(1+ν2)
sin2 πs tanπiν

cos π(iν−s) cos π(iν+s)
×(−1+2iν−2s)(1+2iν−2s)

J+−(−1
2

+iν, 2 − s) + J+−(−1
2

−iν, 2+s)

= − π

8iν(1+ν2)
sin2 πs tanπiν

cos π(iν−s) cos π(iν+s)
. (3.26)

We find that all the other components are zero.
Let us summarize our final results.
We obtain the selection rule that for a virtual photon

scattering, only the components n = 0 and n = ±2 con-
tribute. We list underneath the expressions for these non-
vanishing amplitudes. We introduce the angle φ between
the plane formed by the initial- and final-state electrons
and the initial- and final-state photons respectively, which
is the argument of q. First, the n = 0 components:

I0,ν
++ = −2π6αeαse

2
(

Q

2

)−1+2iν tanhπν

πν(ν2 + 1)
1

Γ 2( 1
2 +iν)

×
∫

ds

2iπ

(
q2

Q2

)− 1
2+iν+s

×Γ (s) Γ (1+s) Γ (
1
2

−iν−s) Γ (
1
2

+iν−s)

× (11+12ν2+4s2)

I0,ν
+− = 8π6αeαse

2
(

Q

2

)−1+2iν tanhπν

πν(ν2+1)
1

Γ 2( 1
2 + iν)

e2iφ

×
∫

ds

2iπ

(
q2

Q2

)− 1
2+iν+s

×Γ (s) Γ (1+s) Γ (
3
2

−iν−s) Γ (
3
2

+iν−s) . (3.27)

We checked that these two expressions agree with [10] but
for an overall sign difference.
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Second, the n = 2 components:

I2,ν
++ = −4π6αeαse

2
(

Q

2

)−1+2iν tanhπν

πν(ν2+1)
1

Γ 2( 1
2 +iν)

×− 1
2 +iν

+ 1
2 +iν

e2iφ ×
∫

ds

2iπ

(
q2

Q2

)− 1
2+iν+s

×Γ (s) Γ (1+s) Γ (
3
2

−iν−s) Γ (
3
2

+iν−s)

I2,ν
+− = 4π6αeαse

2
(

Q

2

)−1+2iν tanhπν

πν(ν2+1)
1

Γ 2( 1
2 +iν)

×− 1
2 +iν

+ 1
2 +iν

e4iφ ×
∫

ds

2iπ

(
q2

Q2

)− 1
2+iν+s

×Γ (s) Γ (1+s) Γ (
1
2

+iν−s) Γ (
5
2

−iν−s). (3.28)

Third, the n = −2 components are deduced from the pre-
ceeding ones using an appropriate relation between En,ν

and E−n,ν . Let us briefly derive this relation. We come
back to (3.7) and note that it factorizes in the following
way by performing the change of variable ρ1 = b+ρ/2 and
ρ2 = b−ρ/2:

In,ν =
∫ 1

0
dα

∫
dρ dρ̄ H(α, ρ) π3 24iν

−iν+n/2

×Γ (−iν+(1+n)/2)
Γ (iν+(1+n)/2)

Γ (iν+n/2)
Γ (−iν+n/2)

En,ν
q (ρ) , (3.29)

where En,ν
q (ρ) is defined in [7]. We put in the function

H(α, ρ) all the other dependencies, namely:

H(α, ρ) = 8i αeαs e2 f(α)Q̂ ei(α−1/2)Re(q̄ρ)

×K1(|ρ|Q̂)
ρδρ̄δ̃

|ρ| . (3.30)

Note that this formula shows that In,ν is the projection
of the impact factor on En,ν

q [15]. We then notice that for
positive n [7]:

E−n,ν
q (b) = 2−12iν n/2−iν

n/2+iν

Γ 2(n/2−iν)
Γ 2(n/2+iν)

×q2a−1q̄2ã−1En,−ν
q (b) , (3.31)

and hence we arrive at the relation:

I−n,ν = 2−4iν Γ 2(−iν+(1+n)/2)
Γ 2(iν+(1+n)/2)

×q2a−1q̄2ã−1 In,−ν . (3.32)

Applying this relation to (3.28), one obtains:

I−2,ν
++ = −4π6αeαse

2
(

Q

2

)−1+2iν tanhπν

πν(ν2+1)
1

Γ 2( 1
2 +iν)

×− 1
2 +iν

+ 1
2 +iν

e−2iφ ×
∫

ds

2iπ

(
q2

Q2

)− 1
2+iν+s

×Γ (s) Γ (1+s) Γ (
3
2

−iν−s) Γ (
3
2

+iν−s)

I−2,ν
+− = 4π6αeαse

2
(

Q

2

)−1+2iν tanhπν

πν(ν2+1)
1

Γ 2( 1
2 +iν)

×− 1
2 +iν

+ 1
2 +iν

×
∫

ds

2iπ

(
q2

Q2

)− 1
2+iν+s

×Γ (s) Γ (1+s) Γ (
1
2

−iν−s) Γ (
5
2

+iν−s) . (3.33)

Note that the complex integrals over s can be expressed
with (one or a sum of) Legendre functions. Note also that
the helicity-flip component for n = 2 does not vanish at
small q.

The other helicity amplitudes are simply obtained us-
ing the relations In,ν

−− = I−n,ν
++ |φ→−φ and In,ν

−+ =
I−n,ν
+− |φ→−φ.

4 Conclusion

We have computed the coupling of a γ∗γ impact-factor to
the LLx BFKL pomeron. We have found that our calcu-
lation is consistent with a previous one [10] for the n = 0
component. For the higher-conformal spin components,
only the two values n = ±2 contribute, as expected from
symmetry considerations.

The physical motivation underneath was the precise
study of diffractive photon production in the high-energy
regime, including the “higher-twist” type components in-
duced by conformal invariance [8]. With the results we ob-
tained in this paper, we are almost ready to study the phe-
nomenology of the higher-spin components of the BFKL
pomeron with a realistic impact-factor. It should also be
worth to transpose the methods developped here to the
computation of other impact factors. We leave these stud-
ies for forthcoming papers.

Acknowledgements. We thank G.Korchemsky for having
pointed out the reason why the components |n| > 2 should van-
ish. We acknowledge helpful comments and a careful reading
of the manuscript from R.Peschanski, and useful discussions
with S.Wallon.

A A useful formula involving generalized
hypergeometric functions 3F2

In this appendix, one finds an appropriate summation for
the hypergeometric function

3F2

(
1, b + n, c − n

1 + b + p, 1 + c + q
; 1

)

for any integer n and nonnegative integer values of p and
q. Note that we can stick to nonnegative n and obtain −n
by interchanging b and c and p and q respectively. The
results are given in (A.35,A.38) or (A.40).

The existence of the 3F2 function is ensured by the
strict positivity of the real part of the quantity

s ≡ (1 +b+p)+(1+c+q)−1−(b+n)−(c−n) = 1+p+q .
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For our purpose, the relevant values for the parameters
of the 3F2-function are any nonnegative integer n and
p, q ∈ {0, 1, 2}. An elementary method consists in ex-
pressing the function as a series of quotients of Γ func-
tions, which reduces to a series of rational fractions due
to the particular values of its arguments. The latter are
decomposed as a series of terms with minimal denomina-
tors (which are first order polynomials in the summation
index). One can resum the series and one finally obtains a
finite sum whose terms are expressible as ratios of Γ func-
tions and possibly (depending on the relative values of p
and n) Ψ functions. However, the number of contribut-
ing terms apparently grows as n, and one cannot easily
get by this method a simple expression for general n and
small p and q. This remark can be illustrated by applying
a transformation formula (see [16], formula (1) page 533):

3F2

(
1, b + n, c − n

1 + b + p, 1 + c + q
; 1

)

=
Γ (1+p+q)
Γ (1+n+q)

Γ (1+c+q)
Γ (1+c+p+q−n)

×3F2

(
p−n, b+p, c−n

1+c+p+q−n, 1+b+p
; 1

)
. (A.34)

One sees that in the case n < p, the r.h.s. of the preceed-
ing equation is an hypergeometric polynomial which has
n − p terms. Thus a more sophisticated method has to be
developped.

Let us distinguish the cases (i) n > p and (ii) n ≤ p.

(i) n > p.
This case can be obtained by immediate application of
formula (6) (Ibidem, page 534). The condition of applica-
bility is Re(c + q) > 0 which is satisfied in the case of
interest in the core of the paper. The result reads:

3F2

(
1, b+n, c−n

1+b+p, 1+c+q
; 1

)

=
Γ (1+b+p)
Γ (b+n)

Γ (1+c+q)
Γ (c−n)

× Γ (c−b−n−p)
Γ (1+c−b+q−n)

B(1+p+q, n−p)

− (b + p)(c + q)
(n − p)(c − b − n − p)

×3F2

(
−p−q, 1−b−p, 1

1+n−p, 1+c−b−n−p
; 1

)
(A.35)

Note that the 3F2 in the r.h.s. is a finite sum containing
p+q terms, thanks to the parameter −p−q.

(ii) n ≤ p.
This case is a bit more tricky. One uses formula (3) (see
[16]), but one first needs to regularize by introducing a

small parameter ε such that:

3F2

(
1, b + n, c − n

1 + b + p, 1 + c + q
; 1

)

= lim
ε→0

3F2

(
1 + ε, b + n, c − n

1 + b + p, 1 + c + q
; 1

)
.

This leads to:

3F2

(
1 + ε, b + n, c − n

1 + b + p, 1 + c + q
; 1

)
= Γ (1+b+p)Γ (1+c+q)

×Γ (−ε)

{
Γ (c−b−2n)

Γ

×(1+p−n)Γ (1+c−b+q−n)Γ (b+n−ε) (A.36)

×
∞∑

k=0

(b+n)k(b−c+n−q)k(n−p)k

Γ (1+k)(b+n−ε)k(1+b−c+2n)k
+


 b ↔ c

n ↔ −n

p ↔ q



}

,

where we have employed the classical notation (A)k =
Γ (A+k)/Γ (A), and the square brackets is a short nota-
tion for the term obtained by the indicated exchange of
parameters. The next step is to take the limit ε → 0. One
uses the fact that Γ (A+ε) = Γ (A)(1+ε Ψ(A))+o(ε) to
obtain:

3F2

(
1, b + n, c − n

1 + b + p, 1 + c + q
; 1

)

= −Γ (1+b+p)
Γ (b+n)

Γ (1+c+q)
Γ (c−n)

×
{

Γ (c−b−2n)
Γ (1+p−n)Γ (1+c−b+q−n)

×
p−n∑
k=0

(b−c−q+n)k(n−p)k

Γ (1+k)(1+b−c+2n)k
(Ψ(b+n+k)−Ψ(b+n))

+
Γ (c−b−2n)

Γ (1+p−n)Γ (1+c−b+q−n)
Γ (1+p+q)
Γ (1+n+q)

× Γ (1+b−c+2n)
Γ (1+b−c+n+p)

Ψ(b+n) +


 b ↔ c

n ↔ −n

p ↔ q



}

. (A.37)

We wrote it in this form in order to isolate the special func-
tions by using the summation formula (B.44) in appendix
B. After a bunch of straightforward manipulations, we are
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led to the following result:

3F2

(
1, b + n, c − n

1 + b + p, 1 + c + q
; 1

)

= −Γ (1+b+p)
Γ (b+n)

Γ (1+c+q)
Γ (c−n)

{
(−1)p−n

(
p+q

p−n

)

× Γ (c−b−n−p)
Γ (1+c−b+q−n)

(Ψ(b+n)−Ψ(c−n))

+

[
π

sinπb

Γ (c−b−p−n)Γ (b+n)
Γ (1+q+n)

×
p−n−1∑
k=0

1
n−p+k

1
Γ (1+k)

Γ (1+q+n+k)Γ (1−b−p+k)
Γ (1+c−b+q−p+k)

+


 b ↔ c

n ↔ −n

p ↔ q



]}

. (A.38)

The result has been put in a form which shows that if
c = 1 − b, as it is the case in the core of this paper, the
difference of Ψ reduces to a tangent, through the identity:

Ψ(1 − x) − Ψ(x) =
π

tanπx
. (A.39)

One of the most interesting points in these formulae is
that the number of terms is at most equal to p+q, regard-
less the value of n, making them particularly adapted for
our purpose.

Note that in the two cases n = 0 and {p, q} = 0, 1,
the obtained formula matches with formerly calculated
expressions, see for instance [16].

We can obtain a plethora of such formulae by using the
relations between the various 3F2 functions. A particularly
interesting one is the following:

3F2

(
1, b + n, c − n

1 + b + p, 1 + c + q
; 1

)

=
Γ (1+b+p)Γ (1+c+q)Γ (c−b−n−p)
Γ (b+n)Γ (c−n)Γ (1+c−b−n+q)

×
p+q∑
i=0

(−1)i

n−p+i

(
p + q

i

)

×
(

1 − Γ (b+n+i)
Γ (b+p)

Γ (c−n)
Γ (c−p+i)

)
. (A.40)

(We do not reproduce the proof here, but for p < n,
it mainly relies on the use of formula (25) on page 108
in [17]). Note that the formula is trivially analytical for
n > p, but also in the limit n ≡ m ≤ p: all the terms
are analytical but for one pole appearing as a denomina-
tor 1/(n − p + i) for the appropriate value of i. However,
its residue vanishes and so the expression in the r.h.s is fi-
nite. We checked numerically that the obtained expression
is correct for the values of p, q of interest. The property

is not trivial since the asymptotic behaviour of the given
3F2 does not satisfy the hypotheses for Carlson’s theo-
rem and hence there are infinitely many ways to continue
analytically n > p.

B A summation formula

For the needs of appendix A, we simplify the following
expression, getting rid of the Ψ -functions:

l∑
k=0

1
Γ (1+k)

(−l)k(α)k

(γ)k
{Ψ(β+k)−Ψ(β)} .

One notes that:

Ψ(β+k)−Ψ(β) =
k−1∑
i=0

1
β+i

,

and one defines the function:

f(z) =
l∑

k=0

1
Γ (1+k)

(−l)k(α)k

(γ)k

{
k−1∑
i=0

zβ+i

β+i

}
, (B.41)

z being an arbitrary parameter. The quantity we need to
compute is f(1). This goes as follows. The derivative of
f can be summed and we obtain the difference of two
hypergeometric 2F1 functions:

f ′(z) =
zβ−1

z−1
{2F1(−l, α, γ, z)−2F1(−l, α, γ, 1)} .

(B.42)

One uses a well-known transformation [14] for the first
term in the r.h.s. of the preceeding equation:

2F1(−l, α, γ, z) = (1−z)l Γ (γ)Γ (α+l)
Γ (α)Γ (γ+l)

×2F1(−l, γ−α, 1−l−α, 1/(1 − z)) . (B.43)

The integration over z can then be performed safely for
Re(β) > 0. After a few easy manipulations, the result can
be written in the following compact form:

l∑
k=0

1
Γ (1+k)

(−l)k(α)k

(γ)k
{Ψ(β+k)−Ψ(β)}

=
(α)l

(β)l(γ)l

l−1∑
k=0

1
k−l

Γ (1+l)
Γ (1+k)

(γ−α)k(1−β−l)k

(1−α−l)k
.(B.44)

Note the following particular case occuring when α ≡ γ:

l∑
k=0

(−1)k+1

(
l

k

)
Ψ(β + k) = B(β, l) . (B.45)



S. Munier, H. Navelet: The (BFKL) Pomeron-γ∗-γ vertex for any conformal spin 659

C Some particular cases

In this appendix, we compute the difference of
3G2-functions in (3.24), using formulae (A.35,A.38) or al-
ternatively formula (A.40). To fix the notation:

Gpq(n) ≡ 3G2

(
1, γ+α−1+n, γ−α−n

γ+α+p, γ−α+1+q
; 1

)

−3G2

(
1,α+n, 1−α−n

1+α+p, 2−α+q
; 1

)
. (C.46)

We recall that 3G2 is related to 3F2 through the relation:

3G2

(
a1, a2, a3

b1, b2
; z

)
≡ Γ (a1)Γ (a2)Γ (a3)

Γ (b1)Γ (b2)

×3F2

(
a1, a2, a3

b1, b2
; z

)
. (C.47)

A few of the following expressions can be obtained using
[16]. For the others, we use the quoted formulae, with the
parameter values a ≡ γ+α−1 and b ≡ γ−α (resp. a ≡ α
and b ≡ 1−α). We only display the result for n = 0 and
n = 2 although a general expression can be written.

G00(n = 0) =
1

2α−1
{π cot πα+Ψ(γ+α−1)−Ψ(γ−α)}

G00(n = 2) =
γ−1

(γ−α−1)(γ−α−2)

G01(n = 0) =
(γ−1)

2 (α−1)2(γ−α)

−π cot πα+Ψ(γ+α−1)−Ψ(γ−α)
2 (α−1)(2α−1)

G01(n = 2) =
(γ−1)(6α2−3αγ+γ(γ−2))

6α(1−α)(α−γ)(1+α−γ)(2+α−γ)

G10(n = 0) =
γ−1

2α2(γ+α− 1)

+
π cot πα+Ψ(γ+α−1)−Ψ(γ−α)

2α(2α−1)

G10(n = 2) =
1
2

{
1

(γ−α−1)(γ−α−2)
− 1

α(1+α)

}

G11(n = 0)

=
1

α−1 + 1
α + α

γ−α + α−1
γ+α−1 −π cot πα+Ψ(γ−α)−Ψ(γ+α)

2α(α−1)(2α−1)

G11(n = 2) = −1
6

(
2

α(1−α2)
+

1
α−γ

− 2
1+α−γ

+
1

2+α−γ

)

G12(n = 0) = − 1
8α(1−α)(2α−1)(2α−3)

×
{

4− 6
α

− (1+α)(2+α)
(1−α)(2−α)

+
12α(γ−1)

(1−α)(γ−α)

+2
3−2α

γ+α−1
+

(γ+α)(γ+α+1)
(γ−α)(γ−α+1)

}

+
3
4

π cot πα+Ψ(γ+α−1)−Ψ(γ−α)
α(1−α)(2α−1)(2α−3)

G12(n = 2) = − 1
24

{
6

(α−2)(α−1)α(α+1)
+

3
α−γ

+
1

2+α−γ
+

3
−1−α+γ

+
1

1−α+γ

}

G21(n = 0) = − 1
8(−1+α)α(−1+2α)(1+2α)

×
{

1− 6
α

− 6
1+α

− 2(2+α)
−1+α

+
6(1+2α)(−1+γ)

(1+α)(α+γ)

− (α−1)(α−8)+γ(γ−2α−15)
(−1+α+γ)(α+γ)

+
2(1+α+γ)

α−γ

}

−3
4

π cot πα−Ψ(−α+γ)+Ψ(−1+α+γ)
(−1+α)α(−1+2α)(1+2α)

G21(n = 2)

= − (−1+γ)(3α2(1+α)(5+7α)+2γ−α(6+α(29+27α))γ+(1+2α)(−1+5α)γ2

12(−1+α)α2(1+α)2(1+2α)(α−γ)(1+α−γ)(2+α−γ)

−π cot πα − Ψ(−2−α+γ)+Ψ(1+α+γ)
4α(1+α)(1+2α)(3+2α)

D Comparison with the calculation
of Evanson and Forshaw

We write here another expression for (3.12) in order to
try to match at this level our calculation with the one
of [10]. We perform the following transformation on the
(antiholomorphic) 2G1-functions in formula (3.12) [14]:

2G1(α, β, γ, z) =
π

sinπ(γ−α−β)
(D.51)

×
{

1
Γ (γ−α)Γ (γ−β) 2G1(α, β, 1+α+β−γ, 1−z)

− z1−γ(1−z)γ−α−β

Γ (1−α)Γ (1−β) 2G1(1−α, 1−β, 1−α−β+γ, 1−z)

}
.
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One makes use of the relations:

a0+a1+1 = 2b1

ã0+ã1+1 = 2b̃1 . (D.52)

The result reads:

−2iπ
µ

sinπb1

sinπ(b1−a0)
sinπb1

{
α1−b1 ᾱ1−̃b1

sinπ(b̃1−ã0)
Γ (1−a0)Γ (1−a1)

×2G1(b1−a0, b1−a1, b1, 1−α)

×2G1(b̃1−ã0, b̃1−ã1, 2−b̃1, ᾱ)

+(1−α)1−b1(1−ᾱ)1−̃b1
sinπ(b1−a0)

Γ (1−ã0)Γ (1−ã1)
×2G1(b1−a0, b1−a1, 2−b1, 1−α)

×2G1(b̃1−ã0, b̃1−ã1, b̃1, ᾱ)

−α1−b1(1−ᾱ)1−b̃1
1
π

sin2 π(b̃1−ã0)
Γ (ã0)Γ (ã1)

Γ (1−a0)Γ (1−a1)

×2G1(b1−a0, b1−a1, b1, 1−α)2G1(b̃1−ã0, b̃1−ã1, b̃1, ᾱ)

−(1−α)1−b1 ᾱ1−b̃1
1
π

sinπ(b1−a0) sinπ(b̃1−ã0)

×2G1(b1−a0, b1−a1, 2−b1, 1−α)

×2G1(b̃1−ã0, b̃1−ã1, 2−b̃1, ᾱ)

}
. (D.53)

In our particular case, α is real and so ᾱ=α.
Furthermore, if one is only interested by the case n = 0

and, say, the non-flip helicity amplitude, then a0 = ã0,
a1 = ã1 and b1 = b̃1. One will have to integrate this ex-
pression over α after having multiplied it by a symmetric
fonction under the exchange α → 1 − α.

Hence one sees on the previous formula that the first
two terms give similar contributions after integration and
are proportional to the one quoted in [10], (3.46). The two
other terms do not appear in the latter. So at this stage
the intermediate forms differ, but the integrated results
are identical. However, we failed to explain why.

E The vanishing of the |n| > 2 components

In the core of the text, the cancellation of the components
|n| > 2 appears as an outcome of a complicated calcula-
tion, whose last step is done using mathematica. In this
appendix, we show more explicitly how this occurs. We
demonstrate more generally that for f(α)=αm+(1−α)m,
all the components n > m vanish after integration over
α. We restrict our calculation to the case δ = δ̃, which
corresponds to the helicity-conserving amplitudes.

Our starting point is (3.17). We shall prove the van-
ishing of the factor:

π

sinπ( 1
2 +δ−s)

J m(a,
1
2

+δ−s)

− π

sinπ( 3
2 −δ+s)

J m(1−ã,
3
2

−δ̃+s)

=
π

sinπ( 1
2 +δ−s)

(J m(a, c)+J m(1−ã, 2−c)) , (E.54)

which appears in the brackets in (3.17). For this purpose,
we compute the J s in terms of 4G3-functions. The result
is straightforward:

J m(a, c)+J m(1−ã, 2−c̃)

= −4G3

(
ã, 1−ã, m+2−c, 1+m

2−c, m+1+a, m+2−a
; 1

)

−4G3

(
a, 1−a, m+c, 1+m

c, m+1+ã, m+2−ã
; 1

)

+4G3

(
c−ã, c+ã−1, m+1+c, m+c

c, c+a+m, c−a+m+1
; 1

)

+4G3

(
2−c−a, 1−c+a, m+3−c, m+2−c

2−c, 2−c+ã+m, 3−c−ã+m
; 1

)
(E.55)

The point is that for n > m, the two first terms compen-
sate, as we will prove explicitely. The same is true for the
two last terms. Let us use the following identities:

∫
ds

2iπ
cos πs Γ (−s)

∏3
i=0 Γ (s+ai)∏3
j=1 Γ (s+bj)

= 4G3(ai; bj ; 1)

∫
ds

2iπ
sinπs Γ (−s)

∏3
i=0 Γ (s+ai)∏3
j=1 Γ (s+bj)

= 0 . (E.56)

The first one is the Mellin-Barnes representation of the hy-
pergeometric function. The contour is a path in the com-
plex plane for the s variable, which separates the poles of
Γ (−s) and those of the Γ (s+ai). Both identities are ob-
tained by closing the contour to the right (the second iden-
tity stems from the fact that sinπs Γ (−s) has no pole).
One can also close the contour to the left:

∫
ds

2iπ
cos πs Γ (−s)

∏3
i=0 Γ (s+ai)∏3
j=1 Γ (s+bj)

=
3∑

i=0

cos πai

∏3
j=1 sinπ(ai−bj +1)∏3

j=0 6=i sinπ(ai−aj +1)

×4G3

(
ai, ai−bj +1
ai−aj +1

; 1

)
∫

ds

2iπ
sinπs Γ (−s)

∏3
i=0 Γ (s+ai)∏3
j=1 Γ (s+bj)

=
3∑

i=0

sinπai

∏3
j=1 sinπ(ai−bj +1)∏3

j=0 6=i sinπ(ai−aj +1)

×4G3

(
ai, ai−bj +1
ai−aj +1

; 1

)
. (E.57)
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Identifying these two sets of equalities, we obtain:

4G3(ai; bj ; 1) =
3∑

i=0

cos πai

∏3
j=1 sinπ(ai−bj +1)∏3

j=0 6=i sinπ(ai−aj +1)

×4G3

(
ai, ai−bj +1
ai−aj +1

; 1

)

0 =
3∑

i=0

sinπai

∏3
j=1 sinπ(ai−bj +1)∏3

j=0 6=i sinπ(ai−aj +1)

×4G3

(
ai, ai−bj +1
ai−aj +1

; 1

)
. (E.58)

One sets the parameters as follows: (ai) = (ã, 1− ã, m+
2−c, 1+m), (bi) = (2−c, m+1+a, m+2−a), so that the
equalities (E.58) become

G1 = cos πã × F1 + cos π(1−ã) × F2

+cos π(m+1)
sinπ(c+m) sinπ(1−a) sinπa

sinπ(m+2−ã) sinπ(m+1+ã) sinπc

×G2 + cos π(m+2−c) × D (E.59)
0 = sinπã × F1 + sinπ(1−ã) × F2

+ sinπ(m+1)
sinπ(c+m) sinπ(1−a) sinπa

sinπ(m+2−ã) sinπ(m+1+ã) sinπc

×G2 + sinπ(m+2−c) × D , (E.60)

where

G1 = 4G3

(
ã, 1−ã, m+2−c, 1+m

2−c, m+1+a, m+2−a
; 1

)

F1 =
sinπ(ã−a−m) sinπ(c+ã−1) sinπ(ã+a−m−1)

sinπ(2ã) sinπ(c+ã−m−1) sinπ(ã−m)

×4G3

(
ã−a−m , ã+a−m−1, ã, c+ã−1

2ã, c+ã−m−1, ã−m
; 1

)

F2 =
sinπ(a−ã−m) sinπ(−ã−a−m+1) sinπ(c−ã)

sinπ(−2ã+2) sinπ(c−ã−m) sinπ(1−m−ã)

×4G3

(
a−ã−m , 1−ã, c−ã, 1−m−a−ã

2−2ã, c−ã−m, 1−ã−m
; 1

)

G2 = 4G3

(
m+1, a, 1−a, c+m

c, m+1+ã, m+2−ã
; 1

)
(E.61)

D =
sinπ(m+1) sinπ(2−a−c) sinπ(a−c−1)

sinπ(m+3−c−ã) sinπ(m+2+ã−c) sinπ(2−c)

×4G3

(
m+2−c, m+1, 2−a−c, a−c−1
m+3−c−ã, m+2+ã−c, 2−c

; 1

)

Let us first notice that the coefficient in front of G2 in
(E.59) is (−1), and is 0 in (E.60). Moreover, the term D
is the product of sinπ(m + 1) times a regular function,
which means that it vanishes. The system then rewrites:

G1+G2 =cos πã × (F1+F2) (E.62)
F1−F2 =0 . (E.63)

Let us show that F1 is null for n > m. First note that
ã−a−m = n−m. For n > m, the 4G3-function in (E.61)
is regular whereas the “boxed” sine in front of it is zero,
hence F1 = 0 (this is not true for n ≤ m since then the
“boxed” argument of the 4G3-function is a negative in-
teger, so the 4G3-function is singular). Then (E.63) im-
plies that F2 is also zero, and (E.62) leads to the identity
G1+G2 =0. Noticing that G1 and G2 are nothing else than
the two first terms in (E.55), this completes the proof.

Let us illustrate these cancellation properties by tak-
ing the particular case c=1. It is of physical interest, since
it corresponds to the impact factor for the γ → γ transi-
tion (real photons) which has been studied earlier in [11].
In this case, (E.55) reduces to G1+G2|c=1 = 0. But we
have also we have G1 =G2 since G2 =G1|a↔ã and since we
showed (see the core of the paper) that the result is invari-
ant by this substitution. Finally, we obtain, for n > m:

4G3

(
ã, 1−ã, 1+m, 1+m

1, m+1+a, m+2−a
; 1

)
=0 .
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